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Abstract. Compared to deformation, residual stress has not been taken into ac-
count in the literature when it comes to welding process optimization. It also plays
an important role to measure the weld quality. This paper reports the implemen-
tation of a multi-objective based Genetic Algorithm (GA) for welding sequence
optimization, in which both structural deformation and residual stress are offered
equal importance. The optimal weights between them are dynamically selected
through optimizing a multi-objective fitness function in an iterative manner. A
thermo-mechanical finite element analysis (FEA) was used to predict both de-
formation and residual stress. We chose the elitism selection approach to ensure
that the three best individuals are copied over once into the next generation to
facilitate convergence by preserving good candidates which can offer an optimal
solution. We exploited a sequential string searching algorithm into single point
crossover method to avoid the repetition of single beads into the sequence. We
utilized a bit string mutation operator by changing the direction of the welding
from one bead chosen randomly from the sequence. Welding simulation exper-
iments were conducted on a typical widely used mounting bracket which has
eight seams. Multi-objective based GA effectively reduces the computational
complexity over exhaustive search with significant reduction of both structural
deformation (∼80%) and residual stress (∼15%).

Keywords: Multi-objective optimization, genetic algorithm, residual stress.

1 Introduction

Fusion welding processes still very common in manufactutring, because they provide
several advanteges in terms of cost, flexibility and design reliability. Gas Metal Arc
Welding (GMAW) joins metals by simultaneously melting the base metal and adding
a filler material to the joint to form a pool of molten material (the weld pool). Then, it
cools down to form a joint that can be same or stronger than the base metal [9]. Welding
is extensively used in a wide range of industries such as automotive, shipbuilding,
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aerospace, construction, pipelines, nuclear, pressure vessels, heavy and earth-moving
equipment [22,13].

The scope of this research is limited to GMAW process. Welding deformation and
effective residual stress derive several negative impacts to the manufacturing process,
adding additional cost in various ways, such as constraints in the design phase, ex-
tra operations, cost of quality and overall capital expenditure. Welding deformation
and residual stress can be minimized by finding a suitable welding sequence. The
industrial practice of welding sequence optimization is to select the best sequence by
experience and sometimes running a simplified design of experiments which typically
does not guarantee the optimal sequence [19]. Since conducting many real welding
experiments is very expensive, welding deformation and effective residual stress are
computed through a welding simulation software based on Finite Element Methods
(FEM). Thermo-mechanical models can work under various welding conditions and
geometric configurations. However, it is computationally very expensive and time con-
suming.

The best welding sequence can be achieved through a full factorial design pro-
cedure. For full factorial design, the total number of welding configurations can be
computed by N = nr×r!, where n and r are the number of welding directions and beads
(seams or segments) respectively. This number grows exponentially with the number
of welding beads. For example, a complex weldment like an aero-engine assembly, it
might have 52-64 weld segments [14]. Hence, the full factorial design is not feasible
for industrial applications.

In this research, we implemented an iterative dynamic weight selection based multi-
objective GA for welding sequence optimization. We make the following technical
contributions in this paper:

– Multi-objective based GA effectively reduces the computational complexity over
extensive search. In this research we have used eight weld seams and two welding
directions. The number of welding configurations for exhaustive search is 10,321,920.
In this experiment we achieved the optimal solution through GA after executing the
welding simulation for 42 welding configurations. This is the minimum number
of configurations necessary to find the optimal solution which was found based
on the general Markov chain model of GA. The average execution time for each
welding configuration using thermo-mechanical FEM approach is 30 minutes. Thus
we saved significant amount of computational time.

– Literature reveals that both deformation and effective residual stress [6] measure
the weld quality. Though, deformation was frequently used in the past studies,
however, effective stress has been ignored as demonstrated in the Table 1. This
paper combines both structural deformation and residual stress as a measure of
weld quality and offers equal importance to both of them. The optimal weight
was chosen through dynamic selection of weights in an iterative manner while
optimizing the welding sequence optimization through multi-objective GA. We
exploited a fitness function by the weighted linear combination of the inverse of
the maximum structural deformation and effective residual stress.
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– We expedited the convergence of the GA through the elitism selection approach
and we copied the three best individuals into the next generation and preserved the
best individuals which might lead to optimal solution.

– We tailored the single point crossover algorithm for the welding sequence optimiza-
tion to avoid the repetition of single beads in the welding sequence by incorporating
a sequential string searching algorithm into the single point crossover method.

– We implemented the bit string mutation algorithm by changing only the direction
of the welding on one bead selected randomly from the sequence obtained by
crossover algorithm instead of changing the bead itself to avoid the repetition of
single bead in the welding sequence.

Experiments were conducted through the well-known simulation software Simufact
Welding R©on a mounting bracket, which is widely used in telescopic jib [5] and auto-
motive industries [26,12]. Experimental results demonstrate that best welding sequence
can reduce significant amount of structural deformation (∼80%), effective residual
stress(∼15%) over the worst sequence.

The organization of the paper is as follows. Section 2 presents literature review.
Section 3 discusses the thermal and mechanical analysis of FEM. Proposed dynamic
weight selection based multi-objective GA for welding sequence optimization and its
convergence analysis are presented in section 4. Results and discussions are demon-
strated in section 5. Section 6 concludes this work. Relevant references are listed at the
end of the paper.

2 Literature Review

Several authors have implemented GA for welding sequence optimization. A brief
review is presented in Table 1. Furthermore, Table 2 shows a review of their validation
methods.

Table 1. Literature review on implemented GA fitness function.

Main functions

Author
Trajectory Deformation Residual Temperature Others
time stress

[27] Yes Yes No No No
[17] Yes No No Yes Robot joint movements
[20] No Yes No No No
[23] No Yes No No No
[4] No Yes No No Stiffness and stress

constraints
[13] No Yes No Yes No
[15] No Yes No No No

Among the studies mentioned in Table 1, Xie et al. [27] and Kim et al. [17] proposed
multi-objective GA that are discussed below. Xie and Hsieh [27] have implemented
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Table 2. Literature review on GA validation methods.

Validation type

Author
Specimen
FEA

Specimen
tryout

Real part
FEA

Real part try-
out

Others

[27] No No Yes No No
[17] No No No No Virtual trajectory Sim
[20] No No Yes No No
[23] Yes No No No No
[4] No No Yes No No
[13] Yes Yes Yes No No
[15] Yes No No No No

GA for finding a combined clamping and welding sequence. A multi-objective fitness
function is taken into account to minimize cycle time (gun travel path) and assembly
deformation as shown in Equation 1. FEM was used to evaluate the fitness function on
automotive parts by spot welding process.

Min F = w1
Di

D0i
+w2

C
C0

,

i = 1,2,3...N,

(1)

where, w1 and w2 are weights that define the importance of each sub-function; Di is
the total deformation on every single node for the actual generation. D0i is the total
deformation on every single node for the initial generation; C is the cycle time for the
actual generation and C0 is the cycle time for the initial generation. Notice that Di

D0i
and

C
C0

are considered as normalized functions because the units of deformation and cycle
time are different.

Kim et al. [17] have implemented GA using a multi-criteria fitness function (Equa-
tion 2). This function includes the minimization of gun travel time, avoidance of thermal
distortion and smooth robot joint movement. The criteria considered here are Euclidian
distance between weld seams, a 30 mm distance considered as heat affected zone and
total change of the robot joints respectively. This algorithm is suitable for different arc
welding operations such as multi weld lines: singlepass or multipass:

Min F = Min(w1g1 +w2g2), (2)

where: w1 and w2 are weights. The sub-function that involves gun travel time and
distortion criteria g1 is defined by

g1 = ∑
ai j∈T

xi j, (3)

where: T is a trajectory,

xi j =

{
ci j if ai j /∈ hi j

ci j +M1 if ai j ∈ hi j

}
, (4)
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ci j =

{
li j if ai j ∈W

li j +M2 if ai j /∈W

}
, (5)

where: hi j is the heat affected zone for each weld seam ai j in W ; li j is the arc length
ai j; A is a set of arcs ai j from each node i ∈ N to each node j ∈ N; N is a finite set
of nodes in the seam w. W is a set of arcs that represents a weld seam W ⊆ A. For the
sub-function that involves the smooth robot joint movements g2 is defined by:

g2 = ∑
ai j∈T

∑
k∈J

θi jk, (6)

where: θi jk is the angle of change for a joint k from one node i to other node j from
the set ai j. J is a set of robot joints. The penalty terms M1 and M2 are sufficiently large
numbers. M1 ensures that only seams out of the heat affected zone criteria (30 mm) will
be selected. M2 ensures that only valid segments are selected and all of them will be
traveled.

From Table 1, it was shown that past studies have considered deformation and some
of them exploited trajectory time of the robot, temperature, robot joint movements,
stiffness and stress constraints as the measure of the weld quality. However, residual
stress, which is also an important measure for the weld quality [6] has been ignored in
the GA studies utilized for weld sequence optimization. In this research we exploited
both deformation and effective residual stress as the measure of the weld quality and
exploited both of them equally in the fitness function using iterative dynamic weight
selection based multi-objective GA that are discussed in the subsequent sections.

3 Welding Simulation Framework

In order to present our approach we overview the welding simulation framework. This
is important because the fitness function is computed using FEA.

3.1 Thermal Analysis

Weld process modeling (WPM) is a very complex task. The physics of heat generation
has as a fundamental principle the law of conservation of energy. The heat equation can
be written in the following form [9] (Conservation of Energy or Heat Equation):

ḣ = ∇.q+Q, (7a)
q =−κ∇T, (7b)

dh = ρcpdT, (7c)

where h,q,Q,T and ∇T represent enthalpy, thermal flux, power density function, tem-
perature and temperature gradient respectively. κ and cp represent thermal conductivity
tensor and specific heat respectively and both are temperature dependent material prop-
erties. Temperature history in every node is computed by the transient heat conduction
equation 7a, where the change in enthalpy ḣ = ρCp

∂T
∂t , where: ρ is the material density
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(g/mm3), Cp specific heat capacity (J/(g◦C)), T is the current temperature (◦C), q flux
heat vector (W/mm2), Q is the internal heat generation rate (W/mm3), t is the time
(s), ∇ is the spatial gradient operator x,y,z ( ∂

∂x ,
∂

∂y ,
∂

∂z ). The heat flux is the amount of
energy that flows through a particular surface per unit area per unit time. This is defined
by the differential form of Fourier’s Law of thermal conduction equation described in
7b. Here κ is the temperature-dependent thermal conductivity matrix (J/mms◦C) and
∇T is the temperature gradient.

Typically, the complexity of the heat generation physics in the weld puddle is sim-
plified by using a heat input model or well known as welding simulation models. The
classical approach in Computational Welding Mechanics (CWM) is to ignore fluid flow
and use a heat input model where heat distribution is prescribed. The given heat input
replaces the details of the heat generation process and focus on larger scales. Moreover,
the modeling of fluid flow and pertaining convective heat transfer may be integrated
with a CWM model.

Fig. 1. Welding simulation.

The most common used model for fusion welding processes is the well-known
Goldak double ellipsoidal heat distribution. This heat input model combines two el-
lipsoidal heat sources to achieve the expected steeper temperature gradient in front of
the heat source and a less steep gradient at the trailing edge of molten pool. This two
heat sources are defined by Front heat distribution:

Q(x′,y′,z′, t) =
6
√

3 f f Qw

π
√

πabc f
e(
−3x′2

a2 )e(
−3y′2

b2 )e
(−3z′2

C f
2 )

. (8)
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Rear heat distribution:

Q(x′,y′,z′, t) =
6
√

3 frQw

π
√

πabcr
e(
−3x′2

a2 )e(
−3y′2

b2 )e
(−3z′2

Cr2 )
, (9)

where: f f is the fraction factor of heat deposited in the front part, fr is the fraction factor
of heat deposited in the rear part. Those factors must satisfy the relation f f + fr = 2.
a is the width, b is depth, cr is the length of the rear ellipsoid y c f is the length of the
front ellipsoid.

These parameters are physically related to the shape of the weld puddle Figure 2.
Width and depth are commonly taken from the cross section, the authors recommend to
use a half of parameter a for the front fraction and two times a for the rear fraction. For
a linear trajectory along axis z, is defined by z′:

z′ = z+ v(τ− t), (10)

where z actual coordinate z, v is travel speed, τ is a delay factor and t is the time. The
heat available from the heat source is defined by:

Qw = ηIE, (11)

where η heat source efficiency, I is the current (A) , E is the voltage (V ).

Fig. 2. Goldak double ellipsoidal model.

Thus the heat input model in CWM must be calibrated with respect to experiments
or obtained from WPM models. Therefore, the classical CWM models have some
limitations in their predictive power when used to solve different engineering problems.
For example, they cannot prescribe what penetration a given welding procedure will
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give. The appropriate procedure to determine the heat input model is therefore important
in CWM [21].

The FEM software solves this time dependent system of partial differential equa-
tions on a domain defined by a FEM mesh. The domain is dynamic in that it changes
with each time step as filler metal is added to the weld pass. The initial condition is often
assumed to be the ambient temperature but the domain can be initialized to any initial
temperature field. The heating effect of the arc is often modeled by a double ellipsoid
power density distribution that approximates the weld pool as measured from macro-
graphs of the cross-section of several weld passes. A convection boundary condition
q = h(T −Tamb) with convection coefficient h and ambient temperature Tm usually is
applied to external surfaces. The FEM formulation of the heat equation leads to a set
of ordinary differential equations that are integrated in time using a backward Euler
integration scheme.

3.2 Mechanical Analysis

The temperature history from the thermal analysis was used as a series of loads in the
structural analysis. In this phase, the temperature history from the thermal cycle of each
node is taken as an input and it is used as a node load with temperature dependent
material properties. The solid model mesh used for the mechanical analysis was also
used for the thermal analysis where each increment of weld deposition corresponded to
one load step. Because phase transformation has an insignificant effect on the welding
residual stress and distortion, the total strain εtotal (assuming negligible contribution
from solid state phase transformation) can be decomposed into three components as
follows: εtotal = εe+εp+εth, where εe,εp, and εth represent elastic, plastic and thermal
strain respectively. In the welding process, changes in stress caused by deformation are
assumed to travel slowly compared to the speed of sound. So, at any instant, an observed
group of material particles is approximately in static equilibrium, i.e., inertial forces are
neglected.

In rate independent plasticity, viscosity is zero and viscous forces are zero. In either
the Lagrangian or the Eulerian reference frame, the partial differential equation of
equilibrium is, at any moment is given by the conservation of momentum equation
that is mentioned below [8] (Conservation of Momentum Equation):

∇.σ+ f = 0,
σ = Dε,

ε = (∇u+(∇u)T +(∇u)T
∇u)/2,

(12)

where ∇,σ, f ,D,ε and u represent partial differential, cauchy strss, total body force,
temperature dependent material property (elastic matrix relevant to the modulus of
elasticity and Poisson’s ratio), the Green-Lagrange strain and displacement vector re-
spectively. ∇u represents the displacement gradient.

The mechanical model is based on the solution of three partial differential equations
of force equilibrium illustrated in Equation 12. In the FEM formulation, Equation 12
is transformed and integrated over the physical domain, or a reference domain with a
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unique mapping to the physical domain [9]. The simulation software solves this par-
tial differential equation for a viscothermo-elasto-plastic stress-strain relationship. The
initial state often is assumed to be stress free. Dirichlet boundary conditions constrain
the rigid body modes. The system is solved using a time marching scheme with time
step lengths of approximately 0.1 second during welding and 5 second during cooling
phase.

4 Proposed Genetic Algorithm Based Welding Sequence
Optimization framework

Genetic Algorithms emulate natural selection of a set of individuals in order to search
the best solution to a problem [10]. The genetic configuration of each individual is
a possible solution. GA starts with an initial population and those are submitted to
an evolutionary process in such way that the best adapted individuals will continue
to reproduce among them and over several generations the best adapted stands out. We
tailor the GA for the welding sequence optimization: selection, cross-over, and mutation
to avoid the repetition of single bead that is discussed below.

4.1 String Representation of Welding Sequence

Being Q the welding application and S a set of all possible sequences of Q, each
sequence s ∈ S represents a possible sequence which minimizes the overall structure
deformation and residual stress. Each sequence has N weld seams, here called genes
s = {x1,x2,x3, . . .xN}, these are a combination of real numbers ∀n = 1,2,3, ...N. In this
approach every seam can be welded in two directions and it is represented by a positive
sign i f 	 or ↑ or← or negative sign i f � or ↓ or→.

4.2 Initialization of welding sequence

The algorithm starts with an initial population P =
{

s j
}

, where elements of the set of
sequences are called “individuals” j = 1,2,3, ...J. Their genes are generated randomly
and special considerations taken in order to avoid repeated seam in the same welding
sequence.

4.3 Deformation Based Fitness Value

Within the scope of natural selection, the individual eligibility is regarded as the de-
gree of adaptability. In this paper we have implemented a multi-objective fitness func-
tion that takes into account deformation and residual stress and returns a real number
(weighted linear combination of maximum deformation and residual stress of the struc-
ture) f

(
sJ

j=1

)
⇒ R that measures the adaptability of each sequence:

F(s j) =
I

∑
i=1

wi fi, (13)
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where wi is the weight that defines the importance of each sub-function. These weights
are computed dynamically in each iteration t with the equation 14 [7]:

wi(t) =

I
∑

j = 1
j 6= i

∣∣ f j(xt−1)
∣∣

(I−1)×∑
I
j=1
∣∣ f j(xt−1)

∣∣ , (14)

where I is the number of sub-functions, i = 1...I, xt−1 is the best individual among
solutions of the population in the previous generation Pt−1. wi(t) is the dynamic weight
satisfying the following conditions,

0≤ wi(t)≤ 1 and
I

∑
i=1

wi(t) = 1, (15)

where t represents the iteration step of the GA algorithm. f1 is a sub-function that takes
into account the final deformation on the structure and it is computed by FEA. Final
deformation is defined by the equation 18:

f (s j) = 1/(Max(Di)+ ε), (16)

where Di is the total deformation on every node defined by

Di =

√
dxi

2 +dyi
2 +dzi

2, (17)

i = 1,2,3...N,

dxi ,dyi , and dzi are the deformation of node i along x,y, and z axis respectively. ε is a
very small number which was used to offer continuity to the fitness function when the
value of the maximum deformation is zero.

f2 is a sub-function that takes into account effective stress. It is also computed by
FEA and it is defined by the following equation .

f (s j) = 1/(Max(Ei)+ ε), (18)

Ei =

√
(σ1i−σ2i)

2 +(σ2i−σ3i)
2 +(σ3i−σ1i)

2

√
2

, (19)

i = 1,2,3...N,

where σ1, σ2, σ3 are the maximum, intermediate and minimum principal stresses. ε is a
very small number which was used to offer continuity to the fitness function when the
value of the maximum effective stress is zero.
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4.4 Welding Sequence Selection Algorithm

Selection is an important sub-routine where individuals are chosen from the actual
population for later procreation. Good selection algorithm expedites the convergence
of the welding sequence. As a selection procedure, we first implemented a truncation
procedure where the population is sorted by ascending fitness values, then a proportion
µ of the individuals are taken based on fitness value. The proportion µ is computed by
the fraction of the individual fitness value to the sum of the fitness values of all the
samples as shown in Fig. 3.

Fig. 3. Selection procedure with elitism function.

4.5 Crossover for Generating New Welding Sequences

Crossover is analogous to reproduction, new individuals are created from the selected
parents. Each couple of selected individuals s1 and s2 exchange their genes and make
two new individuals, s′1 = s1 × s2 and s′2 = s2 × s1. Several methods for crossover
are reported in literature such as arithmetic, heuristic, single or multi-point, uniform,
cycle, partially mapped and order [16,11]. In this paper we implemented a single point
crossover as demonstrated in Fig. 4 where a random number defines the cut point
a ∈ [1,N]. Later, the descendants are defined by equations 20 y 21 respectively.
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Fig. 4. Single point crossover operator.

To avoid the repetition of the weld seam in the same welding sequence during
crossover we implement a repeated string validation algorithm, the pseudo-code of
which is illustrated below.

function REPEATED STRING VALIDATION
random number a ∈ [1,N−1];
s′1 =

{
x1

1, ...x
a
1
}

;
s′2 =

{
xa+1

2 , ...xN
2

}
;

for i = 1 : N do
if Π(

√
s′1.∗ s′1) 6=

√
s2(i)′.∗ s2(i)′ then

s′1 = {[s′1]∪ s2(i)′};
end if
if Π(

√
s′2.∗ s′2) 6=

√
s1(i)′.∗ s1(i)′ then

s′2 = {[s′2]∪ s1(i)′};
end if

end for
end function

s′1 =
{
[x1

1, ...x
a
1], [x

a+1
2 , ...xN

2 ]
}
, (20)

s′2 =
{
[x1

2, ...x
a
2], [x

a+1
1 , ...xN

1 ]
}
. (21)

4.6 Mutation for Generating New Welding Sequences

Mutation alters one or more individual genes from its actual configuration. It occurs
during evolution in a low incidence according to a defined mutation probability. Some
of the operators found in literature are bit string, delta, invert and swap [24,1,18]. Here
we have used a bit string operator in order to change the direction of welding only rather
than the welding seam itself as shown in Fig. 5 to avoid the repetition of the weld seam.
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Fig. 5. Bit string mutation operator.

4.7 Elitism Based Welding Sequence Selection Algorithm

The Elitism function is a practical variant that ensures that the best individual in the
actual population sbest ∈ Pt and current generation t to carry over to the next generation
Pt+1 as shown in Fig. 3. Elitist based selection algorithm guarantees that the conver-
gence obtained by the GA will follow monotone decreasing behaviour over generations,
[sbest ∈ Pt ]→ Pt+1.

4.8 Pseudo-code and Flowchart of the Proposed Iterative Genetic Algorithm for
the Welding Sequence Optimization

The following algorithm is a repetitive process where the population is going to be
changing over the generations Pt = (s1(t), s2(t), ...sJ(t)) ∈ S. The pseudo-code for the
proposed GA based welding sequence optimization is given below.

function GA(Min D : Q)
Input: P0 = (s1(t), s2(t), ..., sJ(t)) ∈ S
Output: sbest , the best sequence that shows the minimum value of the weighted linear
combination of deformation and residual stress.

t← 0;
Initialize Pt ∈ S;
We assign arbitrary positive real numbers to wi(0), i = 1, ..., I, satisfying the

conditions mentioned in equation 15.
while !terminating condition do

t ++;
Compute the fitness function F(s j) = ∑

I
i=1 wi(t − 1) fi(t − 1); j = 1,2, ...,J

∀s j ∈ Pt−1
Select Pt from Pt−1 based on the relative importance of the value of the

individual fitness function F(s j). ; /* Priority given to the welding sequences based
on weighted linear function of less deformation and residual stress */
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Crossover Pt ← Pt ; /* String searching based single point crossover */
Mutation Pt ← Pt ; /* Change the direction of the welding of one seam */
Evaluate F(s j), j = 1,2, ...,J;
elitism Pt ← sbest from Pt ; /* Elitism based selection approach */
Compute fi(sbest), i = 1, ,2, .., I.

If ∑
I
i=1 | fi(sbest)| 6= 0 then compute, wi(t) =

I
∑

j = 1
j 6= i

| f j(sbest )|

(I−1)×∑
I
j=1 | f j(sbest )| , i = 1,2, ..., I;

end while
return sbest from Pt .

end function
Fig. 6 describes the flowchart of the GA based welding sequence optimization

approach.

Fig. 6. GA based welding sequence optimization approach.

4.9 Convergence Analysis of the Genetic Algorithm

Aytug and Koehler [2,3] showed that for a general Markov chain model of genetic al-
gorithm with elitism, an upper bound for the number of iterations t required to generate
a population S+ which consists entirely of minimal solutions has been generated with
probability α ∈ (0,1), is given by:

t ≥ d ln(1−α)

nln(1−min{µl ,(1−µ)l})
e, (22)
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where, l is the length of the chains that represent the individual, n is the population size
and µ ∈ (0,1) is the mutation rate. dxe is the smallest integer greater than or equal to x.
Studniarski [25] showed that for multi-objective optimization, the (possibly unknown)
number m of these solutions is bounded from below by some known positive integer m̄.
Suppose also that there exists a number β ∈ (0,1/m̄), an upper bound for the number
of iterations t is given by:

t ≥ d ln(1−α)

ln(1− (m̄β)l)
e. (23)

If no non-trivial lower bound m̄ is known, we may always use m̄ = 1.

5 Experimental Results

This section consist of the following subsections, fist we describe the study case. Sec-
ond, we introduce the parameters we have used in terms of GA configuration. Third,
convergence analysis of multi-objective GA is given and last, we present the effects of
welding sequence optimization over the quality variables we targeted before.

5.1 Study Case

We chose a study case of welding a mounting bracket shown in Fig. 7 and 8 which
is typically used in telescopic jib [5], automotive industries [26,12]. We conducted
a simulation experiment of GMAW using popular Simufact R© welding software. For
details about the software, please see [13]. We implemented a multi-objective GA
algorithm for choosing the best welding sequence having minimum weighted linear
combination of structural deformation and effective residual stress and we demonstrated
the effects of welding sequence on the weld quality (structural deformation and effective
stress) by analyzing the structural deformation and residual stress caused by welding of
the four sequences (best, second best, worst and second worst found by GA). Fig. 7
shows geometries of different mounting brackets that can be found frequently in heavy
equipment, vehicles, ships, and Fig. 8 illustrates the engineering drawing with all spec-
ifications of the mounting bracket used in this experiment.

Fig. 7. Different mounting brackets in the market.
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Fig. 8. Study case with 8 seams.

5.2 Parameters Used for this Study

Table 3 shows the GA parameters used in the simulation experiment. We considered 7
generations to converge the GA, initial population size as 6, crossover probability as
50%. We copy three best candidates of the current generation to the next generation us-
ing elitism based selection mechanism. We implemented single point cross-over method
for new sample reproduction. We also implemented single bit string mutation operator
and changed the welding direction of a randomly selected welding seam instead of
welding seam itself to avoid the repetition of the welding seam in the sequence.

Table 3. GA parameters.

Parameter Value
Initial population size 6
Generations 7
Elitism candidates 3
Crossover % 50%
Mutation operator bit string
Crossover operator single point
Qty of seams 8
Possible welding directions 2

5.3 Convergence Analysis of Multi-objective GA

We carried out a multi-objective GA experiment for seven generations and conducted
the convergence analysis. Fig. 9, 10 11 illustrate the behaviors of the four individuals
(best, second best, worst and second worst) in terms of deformation, effective stress
and multi-objective criteria as mentioned in equation 13. Elitism based selection method
expedites the convergence of the GA. Figures show the monotonically decreasing values
of the deformation over seven generations.

The best, second best, worst and second worst sequences are (+6, -5, -2, +8, -1, +7,
-3, -4),(-6, -5, -2, +7, -3, +8, -4, -1), (-4, -3, +8, -1, -6, -5, -2, +7) and (-3, +8, -1, -6, -5, -2,
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+7, -4) respectively as can be seen in Figure 12. Their maximum structural deformation
and effective residual stress values are 0.65mm., 0.82mm., 2.0mm., and 2.08mm. and
427.68MPa, 424.40MPa, 425.20MPa, and 425.96MPa respectively as shown in Figures
13 and 14.

To compute the minimum number of iterations necessary to ensure finding an op-
timal solution for GA with a prescribed probability α = 0.98, m̄ = 1, β = 0.9, number
of bits required to represent an individual l = 8 in equation 23, we get t ≥ d6.95e =
7. We conduct the multi-objective GA upto seven iterations since the computational
complexity of the FEM based thermo-mechanical welding simulation approach is com-
putationally very expensive.

Computation time. The average computation time for every individual of the GA
using athermo-mechanical FEA approach using Simufact Welding R©simulation soft-
ware was 30 minutes. This time depends on the convergence of the thermal analysis.

Fig. 9. Deformation.

Fig. 10. Effective Stress.
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Fig. 11. Multi-Objective.

Figure 13 shows deformation distribution patterns for best, second best, second
worst and worst sequences. It is clear that in worst and second worst sequences the
maximum deformation value is greater than the best and second best sequences. More-
over, the distribution pattern is also better in the best ones, because the area near to the
holes in the vertical pieces is less affected to pass a shaft or a bar through those holes.

Fig. 12. Best, second best, worst and second worst sequences and their corresponding maximum
structural deformation and effective stress.

Figure 14 shows effective residual stress distribution patterns for best, second best,
second worst and worst sequences. The patterns are quite similar at the first looking,
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however there are differences in their frequency. The reduction in magnitude is lower
than deformation. It is clear that effective residual stress affects the area close to the
welding seam.

Fig. 13. Deformation patterns for best,second best, second worst and worst sequences.

Fig. 14. Effective residual stress patterns for best,second best, second worst and worst sequences.
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Fig. 15 shows the values of the two terms, w1 f1 and w2 f2 of the multi-objective
function over seven iterations of GA. This graph shows that the dynamic weighted
method ensures an equitable treatment of each objective [7]. In this experiment, we
always have |w1 f1−w2 f2| ≤ 0.07 as shown in Fig. 15. Fig. 16 illustrates the Pareto
front at iteration 1, 4 and 7.

Results of the Pareto front shown in Fig. 16 demonstrate that both structural defor-
mation and effective stress cannot be simultaneously reduced, decreasing the value of
one increases the value of the other and vice versa. In this study, utilizing iterative dy-
namic weight selection based multi-objective GA, we find the optimal weight between
deformation and effective residual stress through fair treatment of both of them.

Fig. 15. w1 f1 and w2 f2 over dynamic weighted based multi-objective GA.

Fig. 16. Pareto Front.

5.4 Effects of Welding Sequence on Welding Process Optimization

Fig. 17, 18 and 19 demonstrate the normalized frequency of the deformation, effective
residual stress and Multi-objective function (Equation 13) values of the best, second

174

Jesus Romero-Hdz, Gengis Toledo-Ramirez, Baidya Saha

Research in Computing Science 132 (2017) ISSN 1870-4069



Fig. 17. Deformation.

Fig. 18. Effective Stress.

Fig. 19. Multi-Objective.

best, worst and second worst sequences respectively. Fig. 20, 21 and 22 demonstrate the
deformation, effective residual stress and multi-objective values of these four sequences
respectively in terms of the percentage if we consider the value of the worst sequence
(red color bar) as 100%. Fig. 20, 21, and 22 illustrate that best sequence (blue color bar)
achieves∼80% maximum structural deformation,∼15% maximum effective stress and
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∼60% maximum multi-objective values over worst sequence (red color bar) respec-
tively. Fig. 20, 21, and 22 also demonstrate that both best and second best sequences
obtains substantial reduction of maximum structural deformation, effective stress and
multi-objective values over worst and second worst sequences (red and black bars are
much taller than blue and green bars). This result clearly demonstrates that welding
sequence has significant effect on welding optimization technique.

Fig. 20. Deformation.

Fig. 21. Effective Stress.

6 Conclusion and Future Work

Structural deformation and effective residual stress defines a measurement of quality in
terms of welded structures. In this research, we developed and implemented a multi-
objective GA based on welding sequence optimization. Both structural deformation
and effective residual stress have been combined. We exploited a multi-objective fitness
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Fig. 22. Multi-Objective.

function which consists of the linear combination of the inverse of the structural defor-
mation and effective residual stress have been linearly combined and the optimal weight
between them are dynamically selected in an iterative manner ensuring an equitable
treatment of both structural deformation and effective stress.

A thermo-mechanical FEA was used to compute the structural deformation and
effective residual stress. The three sequential steps of GA: selection, crossover and
mutation were tailored for welding sequence optimization to facilitate convergence and
avoiding the repetition of the weld seam in the sequence.

An elitism selection approach was implemented by copying the three best individu-
als into the next generation to expedite the convergence as well as preserving the good
chromosomes which have high probability to offer optimal solution. We implemented
a sequential string searching algorithm to adjust the single point crossover algorithm
for the welding sequence optimization to avoid the repetition of single bead into the
welding sequence. For the similar reason, we only changed the direction of the welding
seam instead the welding seam itself. We computed and executed minimum number
of iterations necessary for finding the optimal solution of the GA based on the general
Markov chain model of GA.

We carried out a simulation experiment on a mounting bracket which its design
is widely used in vehicles and other applications. Experiments were conducted on a
structure with eight weld seams. Results of Pareto front demonstrate that both structural
deformation and effective residual stress cannot be simultaneously reduced. Experi-
mental results illustrate that best welding sequence can reduce significant amount of
structural deformation (∼80%) and residual stress (∼15%) over worst sequence.

This research launched multiple new directions to the welding sequence optimiza-
tion. In future, we would like to incorporate other important characteristics to measure
the quality of welded structures such as temperature, robot time and robot path for weld-
ing sequence optimization. Information about the structural deformation and effective
residual stress after welding each seam in a sequence needs to be investigated.
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